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Abstract. A projective plane of order � consists of a set of �2 + � + 1 points and a set of lines �2 +

� + 1, there are exactly � + 1 points on each line and � + 1 lines pass through each point. A (�, �)-arc

is a set of k points, such that there is some � but no � + 1 are collinear, where � ≥ 2 and a (�, �)-arc is

complete if there is no (� + 1, �) -arc containing it. In this paper the classification of (�, �) -arcs in

��(2, �) for the projective plane of order eight has been done using different methods.
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1. Introduction

A projective plane of order � consists of a set of �2 + � + 1 points and a set of lines �2 + � +
1 , where each line contains exactly � + 1 points. In the last 1950’s, Segre [10] introduced the
notations of arcs and complete arcs. An arc in a plane is a set of points with no three are collinear
and maximal arcs under the set inclusion are called complete arcs. A line containing two points of
an arc is called a secant. An arc is complete if and only if its secants cover the whole plane. The
main research topics in finite geometry is: what is the maximum and the minimum sizes of complete
arcs?

A (�, �)-arc is a set of k points, such that there is some � but no � + 1 are collinear, where � ≥
2 and a (�, �)-arc is complete if there is no (� + 1, �)-arc containing it. Let � be a (�, �)-arc in
��(2, �), the projective plane over the Galois field ��(�) of � elements. The maximum value of k
for which a (�, 4)-arc exist in ��(2,5) has been proved by Barlotti [4] to be sixteen. Sadah [9] have
shown the classification and construction of �-arcs over the Galois field ��(�) with � ≤ 11 . The
full classification of �-arcs in ��(2, �) for � ≤ 19 is shown in [11]. Sticker [5],[6] obtained the full
classification of k-arcs in ��(2,23) , ��(2,25) and ��(2,27) . Coolsact [7] obtained the
classification of �-arcs in ��(2,31), in 2014. The classification and construction of (�, 3)-arcs in
��(2,8) were given by Falih [8]. In 2018, Alabdullah [1] calculated some largest size of complete
(�, �) -arcs in ��(2, �) for some � . A new lower bound is proved for smallest size of complete
(�, �) -arcs is founded by Alabdullah [2] in 2019. A new largest upper bound of ��(2, �) ≤
�+1 2�−3

2
in ��(2, �) is founded by Alabdullah and Hirschfeld [3] in 2021. The main purpose of

this paper is to construct and classify the distinct (�, �)-arcs in ��(2, �) for � = 8 based on �-secant
distribution using different methods and Fortran programs.

2. Background

Definition 2.1. [8] A (�, �) -arc in ��(2, �) is a set � of � points, no � + 1 of which are
collinear, but with at least one set of n points collinear. When � = 2, a (�, 2)-arc is called a �-arc.

Definition 2.2. [8] A (�, �)-arc is complete if it is not contained in a (� + 1, �)-arc.

Definition 2.3. [8] The �-secant distribution of � is the (� + 1)-tuple (��, ��−1, …, �1, �0).

Definition 2.3. (Companion matrix [8]) Let �(�) be a monic polynomial in �[�]:

� � = �� + ��−1��−1 + ⋯ + �1� + �0.
The companion matrix �(�) is � × � matrix given by

� � =

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋱
0

− �0

⋱
0

− �1

⋱
0

− �2

⋱
⋯
⋯

⋱ ⋱
0 1

− ��−2 − ��−1
In ��(2, �), let
� � = �3 + �2�2 + �1� + �0.
The companion matrix �(�) is 3 × 3 matrix given by

� � =
0 1 0
0 0 1

− �0 − �1 − �2

.

Theorem 2.1. (Hirschfeld [8])

�2(2, �) = � + 2, ��� � ����
� + 1, ��� � ���

Theorem 2.2. (Hirschfeld [8])
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1. �2(2, �)
= � − 1 � + �, ��� � ���� ��� �|�
< � − 1 � + � , ��� � ��� .

2. A (�, �) -arc � is maximal if and only if every line in ��(2, �) is either an n-secant or an
external line.

Lemma 2.1. (Hirschfeld [8]) For a (�, �)-arc �, the following equations hold.
�=0
� �� = �2 + � + 1� ; …………………………………. (2.1)

�=1
� ��� = � � + 1� ; …………………………………. (2.2)

�=2
� �(� − 1)�� = � � − 1� ; …………………………………. (2.3)

Notation 2.1. For a (�, �)-arc � in ��(2, �), let
�� = the total number of �-secants of �,
�� = the number of �-secants through a point � of �,
��(2, �) = the maximum size of a (�, �)-arc in ��(2, �).

3. Projective Plane of Order Eight

The projective plane of order eight contains 73 points and 73 lines as shown in Table (1)
and Table (2) respectively. Every line contains 9 points and through every point there pass
9 lines.

Let � � = �3 + � + �4 be an irreducible polynomial over ��(8), then the matrix

� =
0 1 0
0 0 1
�4 1 0

is cyclic projectivity which is given by right multiplication on the points of ��(8).
Let the point �� be represented by the vector (1,0,0) , then �1�� = ��, � = 1,2, ⋯73 .

The 73 points are shown in Table (1).
Let �� be the line which contains the points �1, �2, �4, �8, �16, �32, �37, �55, �64 , then

let ���� = ��, � = 1,2, ⋯73 are the lines of ��(8). The 73 lines are given in Table (2).
Note that �8 = {0,1, �, �2, �3, �4, �5, �6 : �3 + �2 + 1 = 2 = 0}.

Table 1. Points of ��(8)
�1(1,0,0) �2(0,1,0) �3(0,0,1) �4(1, �3, 0) �5(0,1, �3) �6(1, �3, 1)

�7(0,1, �6) �8(1, �6, 0) �9(0,1, �6) �10(1, �3, �4) �11(1, �4, �2) �12(1,1, �5)
�13(1, �2, �5) �14(1, �2, 1) �15(1,0, �5) �16(1, �2, 0) �17(1,0, �2) �18(1, �3, �)
�19(1, �5, �5) �20(1, �2, �3) �21(1, �, �2) �22(1,1, �2) �23(1,1, �) �24(1, �5, �2)
�25 1,1, �6 �26 1, �6, �4 �27 1, �4, �5 �28 1, �2, �2 �29 1,1, �3 �30(1,�,1)
�31 1,0, �4 �32 1, �4, 0 �33 0,1, �4 �34 1, �3, �6 �35 1, �6, 1 �36 1,0, �2

�37 1,1,0 �38 0,1,1 �39 1, �3, �3 �40 1, �, �3 �41 1, �, � �42 1, �5, �3

�43 1, �, �5 �44 1, �2, �6 �45 1, �6, �6 �46 1, �6, �3 �47 1, �, �6 �48 1, �6, �5

�49 1, �2, �4 �50 1, �4, � �51 1, �5, �6 �52 1, �6, �2 �53 1,1,1 �54 1,0, �3

�55 1, �, 0 �56 0,1, � �57 1, �3, �2 �58 1,1, �4 �59 1, �4, �6 �60 1, �6, �
�61 1, �5, � �62 1, �5, 1 �63 1,0, � �64 1, �5, 0 �65 0,1, �5 �66 1, �3, �5

�67 1, �2, � �68 1, �5, �4 �69 1, �4, �4 �70 1, �4, �3 �71 1, �, �4 �72 1, �4, 1
�73 1,0,1
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Table 2. Lines of ��(8)
�1 �1 �2 �4 �8 �16 �32 �37 �55 �64

�2 �2 �3 �5 �9 �17 �33 �38 �56 �65

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
�73 �73 �1 �3 �7 �15 �31 �36 �54 �63

4. Classification of (�, �)-arcs in ��(�).

To find the classification of (�, �)-arcs in ��(�) need to use the method which based on the
type of � -secant distribution and is used to find the large complete (�, �) -arcs. To explain this
method, the classification of (�, 4) -arcs in ��(8) is used The Equations (2.1), (2.2) and (2.3) of
Lemma 2.1 are used here.

4.1 The construction of the distinct (4,4)-arcs

Let � = {1,2,4,37} be a (4,4)-arcs in ��(8). A (4,4)-arc has the same type of �-secant
distribution as �. Therefore, there is only one (4,4)-arc in ��(8) based on the type of �-secant
distribution. This can be calculated from the following equations:

�0 + �1 + �2 + �3 + �4 = 73,
�1 + 2�2 + 3�3 + 4�4 = 36,
�2 + 3�3 + 6�4 = 6.
Since �4 = 1, �3 = 0, �2 = 0, so the only type of (4,4)-arc is (1,0,0,32,40).

4.2 The construction of the distinct (5,4)-arcs

From Section 4.1, there is only one (4,4)-arc �, and there are 64 pints of index zero which do
not lie on 4-secant of �. So, by adding one point of the points of index zero to �, then there is only
one type of (5,4)-arc denoted by ℬ, satisfying the following:

�0 + �1 + �2 + �3 + �4 = 73,
�1 + 2�2 + 3�3 + 4�4 = 45,
�2 + 3�3 + 6�4 = 10.
Since �4 = 1, �3 = 0, so the only type of (5,4)-arc is (1,0,4,33,35).

4.3 The construction of the distinct (6,4)-arcs

From Section 4.2, there is only one (5,4)-arc ℬ , and there are 63 pints of index zero. So, by
adding one point of the points of index zero to ℬ , two distinct (6,4)-arcs �1 and �2 are obtained.
Where �1 is of type (1,0,9,14,7) and �2 is of type (1,1,6,17,6).

4.4 The construction of the distinct (k,4)-arcs, � = �, �, ⋯ , ��

Table (3) illustrates the number of �-secant distribution of (�, 4)-arcs in ��(8). Here, � is the
number of distinct (�, 4)-arcs according to �-secant distribution.

Table 3. The �-secant distribution of (�, 4)-arcs in ��(8)
� (k,4)-arcs � (k,4)-arcs � (k,4)-arcs � (k,4)-arcs

9 (7,4)-arcs 108 (13,4)-arcs 94 (19,4)-arcs 2 (25,4)-arcs
20 (8,4)-arcs 118 (14,4)-arcs 71 (20,4)-arcs 1 (26,4)-arcs
32 (9,4)-arcs 128 (15,4)-arcs 45 (21,4)-arcs 1 (27,4)-arcs
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52 (10,4)-arcs 130 (16,4)-arcs 32 (22,4)-arcs 1 (28,4)-arcs
75 (11,4)-arcs 127 (17,4)-arcs 15 (23,4)-arcs
95 (12,4)-arcs 119 (18,4)-arcs 6 (24,4)-arcs

5. Conclusion

In this paper, the classification of (k,4)-arcs in ��(8) is calculated and �28(2,8) is 28 and the
only type of (28,4)-arc is (63,0,0,0,10).
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والعلوم للهندسة الجامعة العراق كلية مجلة
التطبيقية

عدد توزيع على االعتماد الثامنة الرتبة من السقاطي المستوي في الرااعي القواس تصنيف
I القواطع

1 الهبدا القادر عبد سلم

العراق – البصرة - البترول قسم – الهندسة كلية – البصرة جامعة 1
Salam.abdulqader@uobasrah.edu.iq : اللكتروني البريد

مستقيمات ومجموعة �2 + � + 1 عددها نقاط مجموعة من السقاطي المستوي .يتالف الملخص
من � + 1 يمر نقطة كل وفي مستقيم، كل على النقاط من q+1 يقع حيث �2 + � + 1 عددها
استقامة على تكون فقط n بحيث النقاط من � مجموعة انه على (�, �) القوس يعرف المستقيمات.
قوس يوجد لم اذا تام قوس انه على (�, القوس(� عن يقال واحدة. استقامة على � + 1 يوجد ول واحدة
8 الرتبة من السقاطي المستوي في (�, 4) القواس تصنيف ايجاد تم البحث هذا في �)يحويه. + 1, �)

(i-secants) القواطع عدد على بالعتماد
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